
A partial answer to this question is obtained on the basis of Eq. (6.1) whence it follows 
that, for ko >> i, the effect of the Ve 2ik~ component of the first-apprQximation solution on ' 
sought solution V2 c is slight, so that two-dimensional idealization describes the required so- 
lution at least with an accuracy to O(N2). Actually, with an allowance for (4.1), the compo- 
nent of (VIoV)V i from the right-hand side of (6.1) that is independent of y has the form 

[(V,.V)V~k (V~x ~ ovr / ov~ V ~ = + 

Hence, with an allowance for estimates (5.2) and (5.3), it is evident that, although theV~ ik~ 
component of the first-approximation solution produces in principle Reynolds stresses, which 
affect the velocity field V2c, these stresses are nevertheless small for ko >> 1 in compari- 
son with the term (Vc.V)V c (their ratio amounts to ~i/ko2), and they can be neglected. 

LITERATURE CITED 

I. V.I. Khonichev and V. I. Yakovlev, "Motion of a flat finite-width plate in q conducting 
viscous liquid, caused by electromagnetic forces," Zh. Prikl. Mekh. Tekh. Fiz., No. i 
(1980). 

2. V.I. Shatrov and V. I. Yakovlev, '~Variation of the hydrodynamic drag of a ball set in 
motion by electromagnetic forces," Zh. Prikl. Mekh. Tekh. Fiz., No. 6 (1981). 

3. V.I. Shatrov and V. I. Yakovlev, "Hydrodynamic drag of a ball containing a conduction- 
type source of electromagnetic fields," Zh. Prikl. Mekh. Tekh. Fiz., No. 1 (1985). 

4. V.I. Khonichev and V. I. Yakovlev, "Free-field conduction magnetohydrodynamic motor," 
Zh. Prikl. Mekh. Tekh. Fiz., No. 5 (1980). 

NONSTATIONARY VORTEX FLOWS OF AN IDEAL INCOMPRESSIBLE FLUID 

A. A. Abrashkin and E. I. Yakubovich UDC 532.5 

As is known, analytic methods of sufficiently general nature were developed only for po- 
tential motions in the two-dimensional hydrodynamics of an ideal incompressible fluid while 
vortex flows were investigated for quite particular cases [i, 2]. Examples of unbounded plane 
flows with concentration vorticity that allow analytic description of unbounded plane flows 
with concentration vorticity that allow analytic description are certain systems of point vor- 
tices, vortex pairs, Karman street [I], a three vortex system [3], as well as a Kirchhoff vor- 
tex which is an elliptical domain of homogeneous vorticity ~ rotating at the angular velocity 

= mAB/(A + B) 2 (A, B are the ellipse semiaxes). Goerstner [i] obtained a unique exact solu- 
tion for vortex flows with a free boundary which describes trochoidal waves on the surface of 

an infinitely deep fluid [i]. 

Such a type of plane nonstationary biharmonically time-dependent vortex motions of a 
fluid is found in this paper as includes elliptical vortices and Goerstner waves as particular 
cases and, exactly as potential flows, allows the method of conformal transformation for the 
solution of specific problems. It is shown that in a certain sense the class of motions found 
is exceptional, viz., out of all possible solutions in Lagrange variables that contain a fi- 
nite set of time frequencies, only the two-frequency solution obtained in this paper satisfies 
the hydrodynamics equations. However, this class describes only such vortex flows for which 
a reference system can be indicated where the trajectories of the fluid particles remain lo- 
calized, which is not satisfied, say, for the shear layer. 

The theory developed for these flows is used to investigate the self-consistent inter- 
action of a nonstationary vortex domain with an external potential flow. 

Gor'kii. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, 
pp. 57-64, March-April, 1985. Original article submitted March 12, 1984. 
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i. FUNDAMENTAL EQUATIONS 

The equations of two-dimensional hydrodynamics of an ideal incompressible fluid in La- 
grange variables are well known. These are the continuity equation 

X a Y b  - -  X b Y  a = S~(a, b) ( 1 . l )  

and the equations of motion 

XtfXa + YttYa = --(l/p)Pa - -  C~a, XttXb + Yt~Yb, = --(l/p)Pb " ~ b ,  (1 .2 )  

where p is the pressure, p the density, ~ the secondary force potential, X, Y the coordinates 
of the fluid particle trajectory, a, b Cartesian Lagrange coordinates of a liquid element, t 
the time, and $I a certain function independent of the time; the subscripts denote differen- 
tiation with respect to the appropriate variable. These equations are rarely applied since 
their nonlinear terms enter in inconvenient form; however, they have the great advantage that 
their solution should be sought in a fixed domain of the variables a, b even in the presence 
of a free surface. 

It is also known that the system of equations of motion is equivalent to a system of 
equations describing vortex conservation along a trajectory [4] 

XtbX a - -  Xtc tX b + Y;tbYa - -  Y t a Y b  = S~(a, b) ( 1 . 3 )  

�9 [S=(a, b) is a function independent of the time]. This equation is substantially simpler than 
the originals since it does not contain the pressure and its order is not above the order of 
the system (1.2). In the interests of the investigation it is more convenient to write (i.I), 
(1.3) in complex form. We introduce the complex coordinate 

W =  X + W ( W =  X - - i Y )  
and the complex argument 

= a + ib ( i f =  a - ib). 

In t h e s e  v a r i a b l e s ,  (1 .1 )  and (1 .3)  t ake  the  form 

~ - w~  (w)~)  = o; (1 .  ~ ) 

% ( w , , )  (w)~  _ w,~(w), + (w),~ w~-(w) ,~ ~ )  = o. (1.5) 

The equation of motion (1.5) allows certain simplification: By adding the continuity equation 
(1.5) differentiated with respect to the time, we obtain 

~ ( ~ , ~ ( w ) ~ -  w < ( ~ ) ~ ) =  o. ( 1 . 6 )  

Thus, we have written the system of hydrodynamics equations in the form of two conservation 
laws for two Jacobians 

D(W, W)tD(N, ~) = D(Wo, W--o)l~(n, ~; (1.7) 

D(Wt, W)/D(n, ~) = D(W,o, -Wo)/D(n, ~), (1.8) 

where Wo, Wto are the complex coordinate and velocity at the initial instant. The compactness 
and graphic view of this mode of writing simplifies the investigation substantially 

2. PTOLEMY FLOWS 

In this section we obtain certain exact solutions of (1.4) and (1.6) and discuss their 
properties. 

We shall seek the solution in the form 

W ~ G(~)g(t) + F(~[(t). (2.1) 

There follows from the continuity equation 

0 
o-7 ( l ~  ~ - I & / : i l l  ~) = o. 
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The expression in the parentheses is independent of the time in two cases: a)[Gnl 2 = 

IF I = = l, and the time functions satisfy the equality = -Ifl = = const = C,, and therefore, 

one (g or f) is arbitrary, and b) Igl = = IfI 2 = 1 and the functions G and F are arbi- 
trary. 

Let us consider what constraints on the function is given by the equation of motion in 

both versions. Substituting (2.1) into (1.6), we obtain 

where C2 is real. For the case a) we then have 

- I 2  = 

from which we obtain the desired representation of the solution 

W : ~ l g l e ~  t) + ~ ~ IgP - -  Ge~r176 ' (2.3) 

where ~(t), ~(t) are the phases of the functions g and f connected by the relationship 

~t = (~tlgP -- C~)/(Igl z -- C~). (2.4) 

The expression obtained for W describes a flow with constant vorticity. The form of the 
fluid particle trajectories is here determined by the law of variation g(t). 

If it is assumed that a circle corresponds to the vortex motion domain in the plane of 
the Lagrange variables, then the solution (2.3), (2.4) describes an elliptical vortex that ro- 
tates with angular velocity (~+ ~)/2 and is hence deformed so that its eccentricity g is de- 

termined by the formula 

= ( I g l  - -  V'lgl  2 - cO/(Igl § ] / l g P  - c1); 

in the case Igl = const the vortex is not deformed. Let us note that up to now only stationary 

domains with constant vorticity have been studied [5]. 

We now consider the second type of flow corresponding to the case b). It turns out to 

be substantially more distinct than the first, consequently, it is given special attention in 

this paper. 

It follows from (2.2) that 

W = G(N)e ~t  + f ( ~ e  ~t  + h(t) ( 2 . 5 )  

[%, U are real numbers] satisfies the system of hydrodynamic equations. We note that the 
functions G, F are arbitrary to a considerable extent (since the single constraint on their 

selection is the requirement that the Jacobian (1.7) not vanish), consequently, (2.5) describes 

a certain class of vortex flows. Let us study its properties. 

We go over to a coordinate system that moves according to the law X = Re h(t), Y = Im 
h(t). Then the term h(t) vanishes in the expression for W. In such a reference system the 
particle trajectories are epicycloids (hypocycloids), i.e., the particles describe a circle 
whose center moves, in turn, along a circle. Hence, we would call this kind of flow Ptolemy- 

an. 

Two well known kinds of flows, Goerstner waves [i] and a stationary flow with constant 

vorticity in an_elliptical domain [2] are particular cases of Ptolemy flows. Indeed, if % = 
0, G(n) = n, F(n) = --JR exp (ik~), h(t) = 0, are taken in (2.5), then we obtain expressions 

describing Goerstner waves: 

X = a ~ He hb sin (ka -{- ~t), Y = b - -  Re  ~b cos (ka -{- ~t). 

The c a s e  o f  t h e  s e c o n d  f l o w  ( e l l i p t i c a l  p a r t i c l e  t r a j e c t o r i e s )  i s  d e s c r i b e d  b y  t h e  f o r m u l a  

W = ~ e  + , 

where ~, 6, and k are Constants. 

We now consider certain singularities of Ptolemy flows. Uniform rotation of a fluid as 
a whole at an angular velocity ~ is characterized by the common factor exp (i~t) in the ex- 
pression for W. Consequently, by selecting an appropriate reference system, the time factors 
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in the functions G and F can be altered. In such a procedure it is impossible to change just 

the difference in frequencies % -- ~. In particular, the first term in the expression for W 

can be made time-independent. 

Ptolemy flows are vortical. Their vorticity ~ is written in Lagrange variables as follows: 

Naturally, it is time-independent. Let us find the velocity field corresponding to a Ptolemy 
flow. To do this it is necessary to eliminate ~ and ~ from the system 

W = G(~)e ~zt + F(~e~t~  V = iEG(~)e ~ + ~F(~)e~ut 

and to obtain an expression connecting the complex coordinate W to the complex velocity V. In 
sum, the velocity as a function of the coordinates is determined implicitly by the formula 

f i~t V --i~W~ 1[ ..t ibt W - -  V\ 

where F -~ ,  G -~ are the inverse functions of F and G, respectively. 

It becomes evident that for all the simplicity of the time dependence of the particle 
trajectories, the flow field in Euler variables can turn out to be a quite complex function 
of the time. 

Let us present the formula for the pressure in a domain with Ptolemy flow: 

_~p =--~+ i 92 ~ %2 

+ j ( ,C + 

Completing the survey of Ptolemy flow properties, we examine one singularity that makes 
this class of vortical nonstationary flows just as exceptional, in a certain sense, as are the 
potential flows. Namely, it includes all possible plane motions of a liquid with a finite num- 
ber of harmonics in time (in the Lagrange variables). In other words, among the expressions 
for W described by a finite Fourier series 

N 

w = E d 
h = l  

(~k a re  c o n s t a n t s ) ,  only  the b iharmonic  s o l u t i o n s  ( 2 . 5 ) s a t i s f y  the  hydrodynamics e q u a t i o n s .  
Let us show this. 

For N = 2 substituting the expression W = Z~ exp (iX1t) + Z2 exp (i%2t) into the conti- 
nuityequation results in the condition 

D(Z~, Z2)/D(~, ~) = O, 

which is satisfied if Z~ is a function of Z2, or (equivalently) Z~ = G(~), Z2 = F(~), as this 
is indeed written in (2.5). 

For N = 3 we substitute 

W = Z~ exp (iL~t) -}- Z~ exp (iL2t) q- Z 3 exp (i%at) ( 2 . 6 )  

into the continuity equation and equate all the terms oscillating in time to zero. Two cases 

are possible. 

A. All the frequency differences are not mutually equal. We then obtain 

[ z .  = o ,  = o, l = o, 

where the square brackets denote the operation of taking the Jacobian in the variables ~, ~. 

There follows from the first condition that Z2 is a function of ZI, and from the second 
that Z3 is a function of ZI but then we obtain from the last equality that ZI is a function 
of ZI. This is possible if and only if Z~ is a complex function of one real parameter. Evi- 
dently Z2 and Z3 are also functions of just this same real parameter. We take this parameter 
as the Lagrange variable ~. We have hence arrived at the assertion that W is a function of 
only a and is independent of b, and have thereby proved that a flow of the form (2.6) with non- 
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equidistant spectrum cannot be two-dimensional. We obtained this result even without using 
the equations of motion. 

B. The frequencies are equidistant. The result will be the same as in case "A." Now, 
however, it will be necesary to utilize both hydrodynamics equations. There follows from 
the continuity equation 

[zl ,  = 6, [z l ,  + tz , = o, 

and from the equations of motion 

L1 [Z1, Z"-2 ] + ~2 [Z2, Zz ] = 0, 
and a g a i n ,  a s  i n  c a s e  "A" 

[gi, Z21 = 0, [Z~, Z~I = 0, [Z2, Zn] = 0, if  ~ 4 = ~2. 

Therefore, W is again a function of just a and is independent of b. 

It can be shown in an analogous manner that flows with trajectories describable by N 
frequency functions of the time cannot be two-dimensional, and therefore, the Ptolemy flows 
(2..5) are exceptions to this rule. 

3. MERGER OF PTOLEMY AND POTENTIAL FLOWS 

The problem of merging the vortical and potential flow domains has its own, at first 
glance, insuperable difficulties. In fact, the problem of the potential flow around a given 
boundary of arbitrary shape is not solved in the general case. The problem of the potential 
flow around an arbitrary domain with a Ptolemy flow is still more complicated since the re- 
verse influence of the potential flow on the shape of the boundary and on the motion of the 
domain with vorticity as a whole should be taken into account. Nevertheless we succeeded in 
solving it for the case of a simply connected domain with a Ptolemy flow. 

The problem is formulated as follows. The Ptolemy flow (2.5) is given in the domain b > 
O. It is required to determine the potential flow outside this domain, We require compliance 

with the continuity condition by the total velocity on the merge boundary. 

The potential motion in the exterior of the vortical domain is then represented in para- 

metric form. Indeed, the relationships 

W = G(~)e i~t + F(~)e i~t + h(t), 

V = i~G~)o ~t + i~F~)e$~t + ht(t) ( 3 . 1 )  

(~ = a + ib, b < 0 ) solve the problem. These expressions are a parametric mode of writing 
the potential fl--ow since it follows from them that V = V(W, t), while the continuity conditions 
for the shift in the vortex and pressure boundaries are satisfied for b = 0 (continuity of the 

pressure is verified by direct evaluation).* 

It should be noted that the proposed mode of writing the potential flow does not agree 

with either the Lagrange or the Euler modes. 

The transition from a parametric to an Euler representation is evident and accomplished by 
eliminating n from the system (3.1). In order to go over to the Lagrangian description, we 
consider the parameter ~ time-dependent, and its derivative with respect to time is determined 

by the expression 

~t = (V(~, t ) -  W,(~, t))/W~(~, t),.  

which forms, together with its complex-conjugate, a system of two equations in ~ and q. By 
integrating it a dependence of the quantity ~ on the time and the initial conditions ~o can 

be found which are selected as Lagrange coordinates. 

We now apply the results of investigating the general properties of Ptolemy flows to 

study specific vortex streams. 

w = (e o + e ( e - 'hD e "  + h(t) 

*Let us note that the absence of branch points in the function W, i.e., its derivative does 
not vanish, is the uniqueness condition for the potential flow velocity field. 
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4. SELF-CONSISTENT INTERACTION BETWEEN A NONSTATIONARY VORTEX 

DOMAIN AND THE SURROUNDING POTENTIAL FLOW 

Let us consider a single vortex domain around which the flow is potential externally. We 

assume that the expression 

W = G(e~kU)e ~xt + F ( e - i h ~ ) e ~  + h(t) 

gives the Ptolemyan vortex motion within this domain. The interior of a unit circle corre- 
sponds to it on the plane of the Lagrange variable exp (ikD), which is equivalent to the condi- 
tion b > 0. We consider the functions G and F analytic and without singularities. On the flow 
merger boundary b = 0, consequently, in conformity with (3.1) the potential flow in the exter- 

ior of the domain is written in the form 

W = G(ei~)e ~t + f(e-lh~)e ~t  . +  h(t), 

V = i~G (e ~k~) eim + i~F (e-lh~) e 'at + ht (t), ( 4 . 1 )  

where q = a + ib, b < 0. At infinity, the fluid is at rest, i.e., V § 0 as W § ~. Consequent- 

ly, we should set ~ = 0, ht(t) = 0 in the relationships (4.1) [for simplicity we take h(t) = 

0]. 

We have thus obtained a solution describing the potential flow around the vortex domain 
under consideration: The vortical flow is described by the expression 

while the potential flow is given parametrically 

W = G(e'~hDe~'*  + f(e-ik~), 

V = i~G ( 0  s e ~x* . 

(4.2) 

(4.3) 

It is seen that the s_hape of the vortex domain is determined just by the interrelatJ'on between 

the functions F and G, consequently, the function G(q) can be selected from considerations of 

convenience, for instance, in the form G(q) = a exp (ikn). 

The known exact solution for a Kirchhoff elliptical vortex is obtained from (4..2) and 

(4.3) if we take 

G(~q) = (l/2)(A + B) exp (~k~l), F(~) = (l/2)(A - -  B) exp ( - - i@) ,  

where A, B are the ellipse semi-axes. 

We also indicate that the relationships (4.2) and (4.3) yield a solution of the initial 
problem when the velocities, governed uniqely by the shape of the contour are given on a con- 

tour of arbitrary shape to a considerable degree. 

It is more customary to give the initial shape of the vortex contour W* and the velocity 

on it W~o in Euler coordinates. In this case, the determination of the functions G and F re- 
duces to seeking the conformal mapping X of the unit circle on the exterior of the domain W*. 
Then the vortex boundary is written in the form 

" , , i k a  wo(  + 

where Xn are Fourier series coefficients, and n is an integer. 

Let us mention that the parametric representation we selected for the boundary is unique, 
which assures a velocity drop at long ranges from the vortex that is inversely proportional to 

the radius. 

The flow within the vortex domain is determined by the expression 

W=%leikn+~m+ ~ %he -~hn~, (4.4) 
~=0 

which is valid for a given W~o if 
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The value of % is found from the relationship 

I,I," ~ 

The functions G and F defined by (4.4) should satisfy the condition that the Jacobian 
(1.7) does not vanish. Consequently, the problem with a given vortex domain shape at the ini- 
tial time is not always solvable by using (4.2)-(4.4). 

Let us note that the vortex shape and the vorticity within it (but again, not arbitrarily) 
can be given as initial data. 

Let us consider specific examples. For simplicity, we seek a class of stationary vorti- 
ces that are not deformed but just rotate (there is no translational motion). The fluid parti- 
cle trajectories forming the boundary of the vortex domain b = 0 in a reference system rotating 
at the vortex angular velocity ~ will.coincide with the vortex boundary and their velocity is 
tangent to it so that 

W t = y W  a. (4.5) 

Here X is a real constant (in the general case X depends on a but a W* can always be selected 
such that y(a)W a = y'W*, where y* is independent of a). 

In the rotating coordinate system the solution (4.2) becomes 

W = ~ e ~+~(~-~) t  + f (e-~k~) e - i~t .  

Substituting this expression into condition (4.5), we obtain that F is a power-law function 
and (4.3) can be written in the form 

W ---- = e ~k~4ixt + ~ e -ik~, (4.6) 

where 1 is a non-negative integer. It describes the family of stationary vortices. For 1 = 
1 we obtain an elliptical vortex; vortices corresponding to the values 1 >_ 2 represent domains 
of hypocycloidal shape with a number 1 + 1 of cusps, and rotate as a whole with an angular 
velocity ~ = l%(1 + i). The condition of no self-intersections of the vortex boundary is the 
inequality B < al ~I. This condition assures the univalency of the potential flow velocity 

field. 

We write the flow vorticity (4.6) as 

2L= ~ 
CO r 2 - -  l ~  2 e x p  [ - -  2k (1 - -  i )  b]" 

If the vorticity is homogeneous for the elliptical vortex, then it is minimal at the vortex 
center and grows towards the boundary for the remaining terms of the family (4.6). 

In conclusion, let us mention that the vortex domain for a function F different from a 
power law is deformed in a sufficiently complex manner in addition to rotation. The nature 

of this deformation is easily determined from (4.2). 

The authors are grateful to M. I. Rabinovich and B. E. Nemtsov for useful discussions. 

I. 
2. 
3. 

4. 

5. 

LITERATURE CITED 

H. Lamb, Hydrodynamics, 6th edn., Dover (1932). 
G. Batchelor, Introduction to Fluid Dynamics [Russian translation], Mir, Moscow (1973). 
E. A. Novikov, "Dynamics and statics of vortex systems," Zh. Eksp. Teor. Fiz., 68, 1868 

(1975). 
J. J. Stoker, Water Waves. Mathematical Theory and Applications, Wiley-Interscience 

(1957). 
J. Burbea, Lecture Notes in Physics, Vol. 120, 276, springer-Verlag, Berlin--Heidelberg-- 

New York (1980). 

208 


